A new bioartificial pancreas utilizing amphiphilic membranes for the immunoisolation of porcine islets: a pilot study in the canine.

A new bioartificial pancreas utilizing amphiphilic membranes for the immunoisolation of porcine islets: a pilot study in the canine.
ASAIO J. 2009 Jul-Aug;55(4):400-5.

A new bioartificial pancreas utilizing amphiphilic membranes for the immunoisolation of porcine islets: a pilot study in the canine.

Source

Department of General Surgery, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA. grundfs@ccf.org

Abstract

We have developed a replaceable bioartificial pancreas to treat diabetes utilizing a unique cocontinous amphiphilic conetwork membrane created for macroencapsulation and immunoisolation of porcine islet cells (PICs). The membrane is assembled from hydrophilic poly(N,N-dimethyl acrylamide) and hydrophobic/oxyphilic polydimethylsiloxane chains cross-linked with hydrophobic/oxyphilic polymethylhydrosiloxane chains. Our hypothesis is that this membrane allows the survival of xenotransplanted PICs in the absence of prevascularization or immunosuppression because of its extraordinarily high-oxygen permeability and small hydrophilic channel dimensions (3-4 nm). The key components are a 5-10 microm thick semipermeable amphiphilic conetwork membrane reinforced with an electrospun nanomat of polydimethylsiloxane-containing polyurethane, and a laser-perforated nitinol scaffold to provide geometric stability. Devices were loaded with PICs and tested for their ability to maintain islet viability without prevascularization, prevent rejection, and reverse hyperglycemia in three pancreatectomized dogs without immunosuppression. Tissue tolerance was good and there was no systemic toxicity. The bioartificial pancreas protected PICs from toxic environments in vitro and in vivo. Islets remained viable for up to 3 weeks without signs of rejection. Neovascularization was observed. Hyperglycemia was not reversed, most likely because of insufficient islet mass. Further studies to determine long-term islet viability and correction of hyperglycemia are warranted.

Bu makale 11 Mart 2019 tarihinde güncellendi. 0 kez okundu.

Yazar
Doç. Dr. Gürkan Tellioğlu

Doç. Dr. Gürkan Tellioğlu
Doç. Dr. Gürkan Tellioğlu
İstanbul - Genel Cerrahi
Facebook Twitter Instagram Youtube